WhatsApp to Order Via: 050 200 80 89 | 0256 844 544 | 0500 082 349 | 0266 499 565 | 0245 170 917

Ads Here

Tuesday, 18 February 2014

Full form & Meaning of GPRS, GSM, EDGE & GPS



GPRS
******
GPRS = Short for General Packet Radio Service, a standard for wireless communications which runs at speeds up to 115 kilobits per second, compared with current GSM (Global System for Mobile Communications) systems' 9.6 kilobits.

GPRS, which supports a wide range of bandwidths, is an efficient use of limited bandwidth and is particularly suited for sending and receiving small bursts of data, such as e-mail and Web browsing, as well as large volumes of data.



GSM
*****

GSM = Short for Global System for Mobile Communications, one of the leading digital cellular systems. GSM uses narrowband TDMA, which allows eight simultaneous calls on the same radio frequency.

GSM was first introduced in 1991. As of the end of 1997, GSM service was available in more than 100 countries and has become the de facto standard in Europe and Asia.

 

EDGE
******

EDGE = Acronym for Enhanced Data GSM Environment. EDGE is a faster version of GSM wireless service. EDGE enables data to be delivered at rates up to 384 Kbps on a broadband. The standard is based on the GSM standard and uses TDMA multiplexing technology.




GPRS
******
GPS = Short for Global Positioning System, a worldwide MEO satellite navigational system formed by 24 satellites orbiting the earth and their corresponding receivers on the earth. The Global Positioning System (GPS) is a space-based satellite navigation system that provides location and time information in all weather conditions, anywhere on or near the Earth where there is an unobstructed line of sight to four or more GPS satellites.[1] The system provides critical capabilities to military, civil and commercial users around the world. It is maintained by the United States government and is freely accessible to anyone with a GPS receiver. The satellites orbit the earth at approximately 12,000 miles above the surface and make two complete orbits every 24 hours. The GPS satellites continuously transmit digital radio signals that contain data on the satellites location and the exact time to the earth-bound receivers. The satellites are equipped with atomic clocks that are precise to within a billionth of a second. Based on this information the receivers know how long it takes for the signal to reach the receiver on earth. As each signal travels at the speed of light, the longer it takes the receiver to get the signal, the farther away the satellite is. By knowing how far away a satellite is, the receiver knows that it is located somewhere on the surface of an imaginary sphere centered at the satellite. By using three satellites, GPS can calculate the longitude and latitude of the receiver based on where the three spheres intersect. By using four satellites, GPS can also determine altitude.

GPS was developed and is operated by the U.S. Department of Defense. It was originally called NAVSTAR (Navigation System with Timing and Ranging). Before its civilian applications, GPS was used to provide all-weather round-the-clock navigation capabilities for military ground, sea, and air forces.

GPS has applications beyond navigation and location determination. GPS can be used for cartography, forestry, mineral exploration, wildlife habitation management, monitoring the movement of people and things and bringing precise timing to the world.

A GPS satellite is a satellite used by the NAVSTAR Global Positioning System (GPS). The first satellite in the system, Navstar 1, was launched February 22, 1978. The GPS satellite constellation is operated by the 50th Space Wing of the United States Air Force.

No comments:

Post a Comment